PostgreSQL has native support for using SSL connections to encrypt client/server communications for increased security. This requires that OpenSSL is installed on both client and server systems and that support in PostgreSQL is enabled at build time (see Chapter 17).
The terms SSL and TLS are often used interchangeably to mean a secure encrypted connection using a TLS protocol. SSL protocols are the precursors to TLS protocols, and the term SSL is still used for encrypted connections even though SSL protocols are no longer supported. SSL is used interchangeably with TLS in PostgreSQL.
With SSL support compiled in, the
PostgreSQL server can be started with
support for encrypted connections using TLS protocols
enabled by setting the parameter
ssl to on
in
postgresql.conf
. The server will listen for both normal
and SSL connections on the same TCP port, and will negotiate
with any connecting client on whether to use SSL. By
default, this is at the client's option; see Section 21.1 about how to set up the server to require
use of SSL for some or all connections.
To start in SSL mode, files containing the server certificate
and private key must exist. By default, these files are expected to be
named server.crt
and server.key
, respectively, in
the server's data directory, but other names and locations can be specified
using the configuration parameters ssl_cert_file
and ssl_key_file.
On Unix systems, the permissions on server.key
must
disallow any access to world or group; achieve this by the command
chmod 0600 server.key
. Alternatively, the file can be
owned by root and have group read access (that is, 0640
permissions). That setup is intended for installations where certificate
and key files are managed by the operating system. The user under which
the PostgreSQL server runs should then be made a
member of the group that has access to those certificate and key files.
If the data directory allows group read access then certificate files may need to be located outside of the data directory in order to conform to the security requirements outlined above. Generally, group access is enabled to allow an unprivileged user to backup the database, and in that case the backup software will not be able to read the certificate files and will likely error.
If the private key is protected with a passphrase, the server will prompt for the passphrase and will not start until it has been entered. Using a passphrase by default disables the ability to change the server's SSL configuration without a server restart, but see ssl_passphrase_command_supports_reload. Furthermore, passphrase-protected private keys cannot be used at all on Windows.
The first certificate in server.crt
must be the
server's certificate because it must match the server's private key.
The certificates of “intermediate” certificate authorities
can also be appended to the file. Doing this avoids the necessity of
storing intermediate certificates on clients, assuming the root and
intermediate certificates were created with v3_ca
extensions. (This sets the certificate's basic constraint of
CA
to true
.)
This allows easier expiration of intermediate certificates.
It is not necessary to add the root certificate to
server.crt
. Instead, clients must have the root
certificate of the server's certificate chain.
PostgreSQL reads the system-wide
OpenSSL configuration file. By default, this
file is named openssl.cnf
and is located in the
directory reported by openssl version -d
.
This default can be overridden by setting environment variable
OPENSSL_CONF
to the name of the desired configuration file.
OpenSSL supports a wide range of ciphers
and authentication algorithms, of varying strength. While a list of
ciphers can be specified in the OpenSSL
configuration file, you can specify ciphers specifically for use by
the database server by modifying ssl_ciphers in
postgresql.conf
.
It is possible to have authentication without encryption overhead by
using NULL-SHA
or NULL-MD5
ciphers. However,
a man-in-the-middle could read and pass communications between client
and server. Also, encryption overhead is minimal compared to the
overhead of authentication. For these reasons NULL ciphers are not
recommended.
To require the client to supply a trusted certificate,
place certificates of the root certificate authorities
(CAs) you trust in a file in the data
directory, set the parameter ssl_ca_file in
postgresql.conf
to the new file name, and add the
authentication option clientcert=verify-ca
or
clientcert=verify-full
to the appropriate
hostssl
line(s) in pg_hba.conf
.
A certificate will then be requested from the client during SSL
connection startup. (See Section 36.19 for a description
of how to set up certificates on the client.)
For a hostssl
entry with
clientcert=verify-ca
, the server will verify
that the client's certificate is signed by one of the trusted
certificate authorities. If clientcert=verify-full
is specified, the server will not only verify the certificate
chain, but it will also check whether the username or its mapping
matches the cn
(Common Name) of the provided certificate.
Note that certificate chain validation is always ensured when the
cert
authentication method is used
(see Section 21.12).
Intermediate certificates that chain up to existing root certificates
can also appear in the ssl_ca_file file if
you wish to avoid storing them on clients (assuming the root and
intermediate certificates were created with v3_ca
extensions). Certificate Revocation List (CRL) entries are also
checked if the parameter ssl_crl_file or
ssl_crl_dir is set.
The clientcert
authentication option is available for
all authentication methods, but only in pg_hba.conf
lines
specified as hostssl
. When clientcert
is
not specified, the server verifies the client certificate against its CA
file only if a client certificate is presented and the CA is configured.
There are two approaches to enforce that users provide a certificate during login.
The first approach makes use of the cert
authentication
method for hostssl
entries in pg_hba.conf
,
such that the certificate itself is used for authentication while also
providing ssl connection security. See Section 21.12 for details.
(It is not necessary to specify any clientcert
options
explicitly when using the cert
authentication method.)
In this case, the cn
(Common Name) provided in
the certificate is checked against the user name or an applicable mapping.
The second approach combines any authentication method for hostssl
entries with the verification of client certificates by setting the
clientcert
authentication option to verify-ca
or verify-full
. The former option only enforces that
the certificate is valid, while the latter also ensures that the
cn
(Common Name) in the certificate matches
the user name or an applicable mapping.
Table 19.2 summarizes the files that are relevant to the SSL setup on the server. (The shown file names are default names. The locally configured names could be different.)
Table 19.2. SSL Server File Usage
File | Contents | Effect |
---|---|---|
ssl_cert_file ($PGDATA/server.crt ) | server certificate | sent to client to indicate server's identity |
ssl_key_file ($PGDATA/server.key ) | server private key | proves server certificate was sent by the owner; does not indicate certificate owner is trustworthy |
ssl_ca_file | trusted certificate authorities | checks that client certificate is signed by a trusted certificate authority |
ssl_crl_file | certificates revoked by certificate authorities | client certificate must not be on this list |
The server reads these files at server start and whenever the server configuration is reloaded. On Windows systems, they are also re-read whenever a new backend process is spawned for a new client connection.
If an error in these files is detected at server start, the server will refuse to start. But if an error is detected during a configuration reload, the files are ignored and the old SSL configuration continues to be used. On Windows systems, if an error in these files is detected at backend start, that backend will be unable to establish an SSL connection. In all these cases, the error condition is reported in the server log.
To create a simple self-signed certificate for the server, valid for 365
days, use the following OpenSSL command,
replacing dbhost.yourdomain.com
with the
server's host name:
openssl req -new -x509 -days 365 -nodes -text -out server.crt \
-keyout server.key -subj "/CN=dbhost.yourdomain.com
"
Then do:
chmod og-rwx server.key
because the server will reject the file if its permissions are more liberal than this. For more details on how to create your server private key and certificate, refer to the OpenSSL documentation.
While a self-signed certificate can be used for testing, a certificate signed by a certificate authority (CA) (usually an enterprise-wide root CA) should be used in production.
To create a server certificate whose identity can be validated by clients, first create a certificate signing request (CSR) and a public/private key file:
openssl req -new -nodes -text -out root.csr \
-keyout root.key -subj "/CN=root.yourdomain.com
"
chmod og-rwx root.key
Then, sign the request with the key to create a root certificate authority (using the default OpenSSL configuration file location on Linux):
openssl x509 -req -in root.csr -text -days 3650 \ -extfile /etc/ssl/openssl.cnf -extensions v3_ca \ -signkey root.key -out root.crt
Finally, create a server certificate signed by the new root certificate authority:
openssl req -new -nodes -text -out server.csr \
-keyout server.key -subj "/CN=dbhost.yourdomain.com
"
chmod og-rwx server.key
openssl x509 -req -in server.csr -text -days 365 \
-CA root.crt -CAkey root.key -CAcreateserial \
-out server.crt
server.crt
and server.key
should be stored on the server, and root.crt
should
be stored on the client so the client can verify that the server's leaf
certificate was signed by its trusted root certificate.
root.key
should be stored offline for use in
creating future certificates.
It is also possible to create a chain of trust that includes intermediate certificates:
# root openssl req -new -nodes -text -out root.csr \ -keyout root.key -subj "/CN=root.yourdomain.com
" chmod og-rwx root.key openssl x509 -req -in root.csr -text -days 3650 \ -extfile /etc/ssl/openssl.cnf -extensions v3_ca \ -signkey root.key -out root.crt # intermediate openssl req -new -nodes -text -out intermediate.csr \ -keyout intermediate.key -subj "/CN=intermediate.yourdomain.com
" chmod og-rwx intermediate.key openssl x509 -req -in intermediate.csr -text -days 1825 \ -extfile /etc/ssl/openssl.cnf -extensions v3_ca \ -CA root.crt -CAkey root.key -CAcreateserial \ -out intermediate.crt # leaf openssl req -new -nodes -text -out server.csr \ -keyout server.key -subj "/CN=dbhost.yourdomain.com
" chmod og-rwx server.key openssl x509 -req -in server.csr -text -days 365 \ -CA intermediate.crt -CAkey intermediate.key -CAcreateserial \ -out server.crt
server.crt
and
intermediate.crt
should be concatenated
into a certificate file bundle and stored on the server.
server.key
should also be stored on the server.
root.crt
should be stored on the client so
the client can verify that the server's leaf certificate was signed
by a chain of certificates linked to its trusted root certificate.
root.key
and intermediate.key
should be stored offline for use in creating future certificates.